¹⁹F Chemical Shift of Dioxygen Difluoride

By N. J. LAWRENCE, J. S. OGDEN, and J. J. TURNER (University Chemical Laboratories, Lensfield Road, Cambridge)

In the course of our studies of the spectroscopic properties of some oxygen fluorides, we have observed an unusually low value for the ¹⁹F chemical shift of dioxygen difluoride (O_2F_2) . We report the value here in view of the great current interest in these compounds.¹ A dilute solution of O_2F_2 in CF₃Cl shows a single peak at 865 \pm 10 p.p.m. in the low-field side of the solvent peak. Since this value is so large, we have been anxious to make sure that it is a genuine chemical shift.

We have observed no change in the peak position, relative to CF_3Cl , over the temperature range -80° to -130° c, and only a small change with concentration:

$$\begin{split} &\delta[\mathrm{CF_3Cl}\;(90\%)\,-\,\mathrm{O_2F_2}\;(10\%)]=865\,\pm\,10~\mathrm{p.p.m.}\\ &\delta[\mathrm{CF_3Cl}\;(50\%)\,-\,\mathrm{O_2F_2}\;(50\%)]=880\,\pm\,10~\mathrm{p.p.m.} \end{split}$$

Dioxygen difluoride, solid and liquid, is known to contain a paramagnetic species,² and using a

simple quartz apparatus³ we were able to observe the e.s.r. and n.m.r. spectra of the same sample of O_2F_2 in CF_3Cl . The e.s.r. spectrum is a doublet at $g = 2.004 \pm 0.0005$ with hyperfine splitting 12.5 ± 1 gauss, and may be due to O_2F , which is known to exist as a stable free-radical.⁴ Exchange between O₂F and O₂F₂ could affect the chemical shift and also the line-width of the O₂F₂ signal. Addition of oxygen difluoride (OF_2) , which appears to contain the same free radical as O_2F_2 , increased the intensity of the e.s.r. signal by an order of magnitude, but did not measurably change the chemical shift of O_2F_2 . Furthermore, the linewidth of the O_2F_2 peak, measured under non-spin conditions, was the same as CF₃Cl-about 8c./sec. We therefore conclude that either no exchange is taking place, or that the concentration of free radicals is much too low to affect greatly the n.m.r. spectrum.

We think it highly probable that the value observed is the "true" chemical shift of O_2F_2 ; it

might be compared with a value of -510 p.p.m. for FNO⁵ and approximately -800 p.p.m. for the average ¹⁹F shift in UF₆,⁶ both referred to CF₃Cl. It is possible that low-lying excited

states of $O_2F_2^7$ are chiefly responsible⁸ for this value.

(Received, January 20th, 1966; Com. 039.)

- ¹ A. G. Streng, Chem. Rev., 1963, 63, 607.
- ² Private communication from F. I. Metz, to whom we are greatly indebted.

- ^a Frivate communication from F. 1. Netz, to whom we are greatly indected.
 ^a J. S. Ogden and J. J. Turner, Chem. and Ind., in the press.
 ^a A. Arkell, J. Amer. Chem. Soc., 1965, 87, 4057.
 ⁶ J. R. Holmes, B. B. Stewart, and J. S. MacKenzie, J. Chem. Phys., 1962, 37, 2728.
 ⁶ R. Blinc, V. Marinkovič, E. Pirkmajer, I. Zupančič and S. Maričič, J. Chem. Phys., 1963, 38, 2474.
 ⁷ A. D. Kirshenbaum and A. G. Streng, J. Chem. Phys., 1961, 35, 1440.
 ⁸ A. Saika and C. P. Slichter, J. Chem. Phys., 1954, 22, 26.